Emerging Relationships of Sarcomeric Mutations and the Cardiomyocyte Transcriptome in the Setting of Familial Hypertrophic Cardiomyopathy

Authors

  • Chandana Kulkarni Burnett School of Medicine at Texas Christian University, Fort Worth, Texas, USA Author

DOI:

https://doi.org/10.65539/s5hc6w24

Keywords:

familial hypertrophic cardiomyopathy, sarcomeric mutations, MYH7, MYBPC3, cardiomyocyte transcriptome

Abstract

Familial hypertrophic cardiomyopathy (FHC) is the most common inherited cardiac disease and is largely driven by mutations in sarcomeric proteins, especially β-myosin heavy chain (MYH7) and myosin-binding protein C (MYBPC3). This review synthesizes emerging data on how these mutations alter cardiomyocyte mechanics and gene expression. MYH7 mutations reduce force generation and myofibrillar density, while MYBPC3 haploinsufficiency produces hypercontractile, energetically inefficient myocytes. Transcriptomic and microRNA profiling reveal early changes in stress-response, fibrosis, and electrical remodeling pathways. The article also highlights evolving therapies, including cardiac myosin inhibitors like mavacamten and experimental gene-editing approaches, that target upstream molecular drivers rather than downstream structural consequences.

Downloads

Download data is not yet available.

References

Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ Res. 2017;121(7):749-770. doi:10.1161/CIRCRESAHA.117.311059 DOI: https://doi.org/10.1161/CIRCRESAHA.117.311059

Jensen MK, Havndrup O, Christiansen M, et al. Penetrance of Hypertrophic Cardiomyopathy in Children and Adolescents. Circulation. 2013;127(1):48-54. doi:10.1161/CIRCULATIONAHA.111.090514 DOI: https://doi.org/10.1161/CIRCULATIONAHA.111.090514

Lorenzini M, Norrish G, Field E, et al. Penetrance of Hypertrophic Cardiomyopathy in Sarcomere Protein Mutation Carriers. J Am Coll Cardiol. 2020;76(5):550-559. doi:10.1016/j.jacc.2020.06.011 DOI: https://doi.org/10.1016/j.jacc.2020.06.011

Teekakirikul P, Eminaga S, Toka O, et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J Clin Invest. 2010;120(10):3520-3529. doi:10.1172/JCI42028 DOI: https://doi.org/10.1172/JCI42028

Litt MJ, Ali A, Reza N. Familial Hypertrophic Cardiomyopathy: Diagnosis and Management. Vasc Health Risk Manag. 2023;19:211-221. doi:10.2147/VHRM.S365001 DOI: https://doi.org/10.2147/VHRM.S365001

Tanjore R, RangaRaju A, Vadapalli S, Remersu S, Narsimhan C, Nallari P. Genetic variations of β-MYH7 in hypertrophic cardiomyopathy and dilated cardiomyopathy. Indian J Hum Genet. 2010;16(2):67-71. doi:10.4103/0971-6866.69348 DOI: https://doi.org/10.4103/0971-6866.69348

Kraft T, Witjas-Paalberends ER, Boontje NM, et al. Familial hypertrophic cardiomyopathy: functional effects of myosin mutation R723G in cardiomyocytes. J Mol Cell Cardiol. 2013;57:13-22. doi:10.1016/j.yjmcc.2013.01.001 DOI: https://doi.org/10.1016/j.yjmcc.2013.01.001

Witjas-Paalberends ER, Piroddi N, Stam K, et al. Mutations in MYH7 reduce the force generating capacity of sarcomeres in human familial hypertrophic cardiomyopathy. Cardiovasc Res. 2013;99(3):432-441. doi:10.1093/cvr/cvt119 DOI: https://doi.org/10.1093/cvr/cvt119

Toepfer CN, Wakimoto H, Garfinkel AC, et al. Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci Transl Med. 2019;11(476):eaat1199. doi:10.1126/scitranslmed.aat1199 DOI: https://doi.org/10.1126/scitranslmed.aat1199

Farrell E, Armstrong AE, Grimes AC, Naya FJ, de Lange WJ, Ralphe JC. Transcriptome Analysis of Cardiac Hypertrophic Growth in MYBPC3-Null Mice Suggests Early Responders in Hypertrophic Remodeling. Front Physiol. 2018;9. Accessed February 6, 2023. https://www.frontiersin.org/articles/10.3389/fphys.2018.01442 DOI: https://doi.org/10.3389/fphys.2018.01442

Cohn R, Thakar K, Lowe A, et al. A Contraction Stress Model of Hypertrophic Cardiomyopathy due to Sarcomere Mutations. Stem Cell Rep. 2019;12(1):71-83. doi:10.1016/j.stemcr.2018.11.015 DOI: https://doi.org/10.1016/j.stemcr.2018.11.015

Roncarati R, Viviani Anselmi C, Losi MA, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2014;63(9):920-927. doi:10.1016/j.jacc.2013.09.041 DOI: https://doi.org/10.1016/j.jacc.2013.09.041

Kuster DWD, Mulders J, Ten Cate FJ, et al. MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations. J Mol Cell Cardiol. 2013;65:59-66. doi:10.1016/j.yjmcc.2013.09.012 DOI: https://doi.org/10.1016/j.yjmcc.2013.09.012

Landstrom AP, Ackerman MJ. Mutation type is not clinically useful in predicting prognosis in hypertrophic cardiomyopathy. Circulation. 2010;122(23):2441-2449; discussion 2450. doi:10.1161/CIRCULATIONAHA.110.954446 DOI: https://doi.org/10.1161/CIRCULATIONAHA.110.954446

A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice - PubMed. Accessed February 6, 2023. https://pubmed.ncbi.nlm.nih.gov/26912705/

Maron MS, Ommen SR. Exploring New and Old Therapies for Obstructive Hypertrophic Cardiomyopathy: Mavacamten in Perspective. Circulation. 2021;143(12):1181-1183. doi:10.1161/CIRCULATIONAHA.120.051330 DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.051330

Prondzynski M, Krämer E, Laufer SD, et al. Evaluation of MYBPC3 trans-Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes. Mol Ther Nucleic Acids. 2017;7:475-486. doi:10.1016/j.omtn.2017.05.008 DOI: https://doi.org/10.1016/j.omtn.2017.05.008

da Rocha AM, Guerrero-Serna G, Helms A, et al. Deficient cMyBP-C protein expression during cardiomyocyte differentiation underlies human hypertrophic cardiomyopathy cellular phenotypes in disease specific human ES cell derived cardiomyocytes. J Mol Cell Cardiol. 2016;99:197-206. doi:10.1016/j.yjmcc.2016.09.004 DOI: https://doi.org/10.1016/j.yjmcc.2016.09.004

Chai AC, Cui M, Chemello F, et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med. 2023;29(2):401-411. doi:10.1038/s41591-022-02176-5 DOI: https://doi.org/10.1038/s41591-022-02176-5

Downloads

Published

2024-07-29

How to Cite

Emerging Relationships of Sarcomeric Mutations and the Cardiomyocyte Transcriptome in the Setting of Familial Hypertrophic Cardiomyopathy. (2024). Harvard Medical Student Review, 9(1), 33-41. https://doi.org/10.65539/s5hc6w24

Similar Articles

You may also start an advanced similarity search for this article.