The Role of Stem Cell Therapy in Treating Type 1 Diabetes and Scientific Advances in Evading an Immune Response

Authors

  • Kyle Maloney Georgetown University Medical Center, Washington, DC Author
  • William Azar Georgetown University Medical Center, Washington, DC Author
  • Jaclyn McKenney Georgetown University Medical Center, Washington, DC Author
  • Priyanka Upasani Georgetown University Medical Center, Washington, DC Author
  • Ian Gallicano Georgetown University Medical Center, Washington, DC Author

DOI:

https://doi.org/10.65539/xdtar040

Keywords:

human embryonic stem cells, stem cell therapy, type I diabetes, immune system

Abstract

Considering the increasing prevalence and healthcare costs associated with diabetes mellitus (DM), the disease has become an essential subject of continuing research. In particular, type 1 diabetes (T1D) has garnered great interest since current treatments are limited to following a strict diet and insulin regimen or involve approaches that are inaccessible or inappropriate for use by the public. While studies have shown promising effects of stem cell therapy in treating diabetes-induced nephropathy/retinopathy, further research is underway to find a cure for the disease itself. Human embryonic stem cells hold promise for treating T1D because they can effectively differentiate into endocrine and pancreatic cells without encapsulation. However, the likelihood of rejection has shifted focus onto novel techniques that could allow stem cell-derived β-cells to circumvent the immune system. Targeting Human Leukocyte Antigen (HLA) molecules using gene editing techniques such as CRISPR/Cas9 system would allow for an increased graft tolerance. This promising system, combined with encapsulating stem cells to physically separate them from the immune system, could support long-term cell survival and thus increase the likelihood of finding a cure for T1D.

Downloads

Download data is not yet available.

References

1. Ogurtsova, K., da Rocha Fernandes, J. D, Y. Huang, et al. 2017. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice. 128:40-50. doi: 10.1016/j.diabres.2017.03.024. DOI: https://doi.org/10.1016/j.diabres.2017.03.024

2. Tao B, Pietropaolo M, Atkinson M, Schatz D, Taylor D. Estimating the cost of type 1 diabetes in the U.S.: a propensity score matching method. PLoS One. 2010 Jul 9;5(7):e11501. doi: 10.1371/journal.pone.0011501. PMID: 20634976; PMCID: PMC2901386. DOI: https://doi.org/10.1371/journal.pone.0011501

3. Cheng, S.K., Park, E.Y., Pehar, A., Rooney, A.C., & Gallicano, G.I. (2016). Current progress of human trials using stem cell therapy as a treatment for diabetes mellitus. American Journal of Stem Cells, 5(3), 74-86. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5107652/

4. Evangelista, A.F., Vannier-Santos, M.A., de Assis, Silva, et al. 2018. Bone marrow-derived mesenchymal stem/stromal cells reverse the sensorial diabetic neuropathy via modulation of spinal neuroinflammatory cascades. J Neuroinflammation. 15:189. doi: 10.1186/s12974-018-1224-3. DOI: https://doi.org/10.1186/s12974-018-1224-3

5. Ezquer, F.E., M.E. Ezquer, D.B. Parrau, D. Carpio, A.J. Yañez, and P.A. Conget. 2008. Systemic Administration of Multipotent Mesenchymal Stromal Cells Reverts Hyperglycemia and Prevents Nephropathy in Type 1 Diabetic Mice. Biology of Blood and Marrow Transplantation. 14:631-640. doi: 10.1016/j.bbmt.2008.01.006. DOI: https://doi.org/10.1016/j.bbmt.2008.01.006

6. Gamble, A., A.R. Pepper, A. Bruni, and A.M.J. Shapiro. 2018. The journey of islet cell transplantation and future development. Islets. 10:80-94. doi: 10.1080/19382014.2018.1428511. DOI: https://doi.org/10.1080/19382014.2018.1428511

7. Gu, X., Yu, X., Zhao, C., et al. 2018. Efficacy and Safety of Autologous Bone Marrow Mesenchymal Stem Cell Transplantation in Patients with Diabetic Retinopathy. Cpb. 49:40-52. doi: 10.1159/000492838. DOI: https://doi.org/10.1159/000492838

8. Kliegman, R.M., Geme, J.W.S., Blum, N.J., Shah, S.S., Tasker, R.C., and Wilson, K.M. 2020. Diabetes Mellitus. In Nelson Textbook of Pediatrics. , Philadelphia, PA. 3019-3052.e4.

9. Godfrey, K.J., Matthew, B., Bulman, J.C., Shah, O., Clement, S., & Gallicano, G.I. (2011, August 29). Stem cell-based treatments for Type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Wiley Online Library. doi: 10.1111/j.1464-5491.2011.03433.x DOI: https://doi.org/10.1111/j.1464-5491.2011.03433.x

10. Robert A. Gerber, Joseph C. Cappelleri, Ione A. Kourides, Robert A. Gelfand; Treatment Satisfaction With Inhaled Insulin in Patients With Type 1 Diabetes: A randomized controlled trial. Diabetes Care 1 September 2001; 24 (9): 1556–1559. DOI: https://doi.org/10.2337/diacare.24.9.1556

11. Sackett, S.D., A. Rodriguez, and J.S. Odorico. 2017. The Nexus of Stem Cell-Derived Beta-Cells and Genome Engineering. Rev Diabet Stud. 14:39-50. doi: 10.1900/RDS.2017.14.39. DOI: https://doi.org/10.1900/RDS.2017.14.39

12. Sneddon, J.B., Q. Tang, P. Stock, et al. 2018. Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell. 22:810-823. doi: 10.1016/j.stem.2018.05.016. DOI: https://doi.org/10.1016/j.stem.2018.05.016

13. Juneja, R., Hirsch, I. B., Naik, R. G., Brooks-Worrell, B. M., Greenbaum, C. J., & Palmer, J. P. (2001). Islet cell antibodies and glutamic acid decarboxylase antibodies, but not the clinical phenotype, help to identify type 1(1/2) diabetes in patients presenting with type 2 diabetes. Metabolism: clinical and experimental, 50(9), 1008–1013. https://doi.org/10.1053/meta.2001.25654 DOI: https://doi.org/10.1053/meta.2001.25654

14. Venugopal SK, Mowery ML, Jialal I. Biochemistry, C Peptide. [Updated 2023 Aug 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526026/

15. Taplin, C. E., & Barker, J. M. (2008). Autoantibodies in type 1 diabetes. Autoimmunity, 41(1), 11–18. https://doi.org/10.1080/0891693070161916 DOI: https://doi.org/10.1080/08916930701619169

16. Domenichini, D.J. 2020. Diabetes Mellitus. In Ferri's Clinical Advisor 2020. Elsevier, Philadelphia, PA. 432-441.e2.

17. Bahar SG, Devulapally P. Pancreas Transplantation. [Updated 2023 Mar 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562338/

18. Bondoc, A. J., Abu-El-Haija, M., & Nathan, J. D. (2017). Pediatric pancreas transplantation, including total pancreatectomy with islet autotransplantation. Seminars in pediatric surgery, 26(4), 250–256. https://doi.org/10.1053/j.sempedsurg.2017.07.004 DOI: https://doi.org/10.1053/j.sempedsurg.2017.07.004

19. Odorico, J.S., Cooper, M. & Dunn, T.B. Where Have All the Pancreas Transplants Gone and What Needs to Change?. Curr Transpl Rep 6, 285–293 (2019). https://doi.org/10.1007/s40472-019-00262-1 DOI: https://doi.org/10.1007/s40472-019-00262-1

20. Ryan, E. A., Paty, B. W., Senior, P. A., & Shapiro, A. M. (2004). Risks and side effects of islet transplantation. Current diabetes reports, 4(4), 304–309. https://doi.org/10.1007/s11892-004-0083-8 DOI: https://doi.org/10.1007/s11892-004-0083-8

21. Ramzy, Adam et al. Cell Stem Cell, Volume 28, Issue 12, 2047 - 2061.e5 DOI: https://doi.org/10.1016/j.stem.2021.10.003

22. Nagaishi, K., Y. Mizue, T. Chikenji, et al. 2017. Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Scientific Reports. 7:1-17. doi: 10.1038/s41598-017-08921-y. DOI: https://doi.org/10.1038/s41598-017-08921-y

23. Vipra Guneta, Nguan Soon Tan, et al. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions, Experimental Cell Research, Volume 348, Issue 2, 2016, Pages 155-164, ISSN 0014-4827, https://doi.org/10.1016/j.yexcr.2016.09.012. DOI: https://doi.org/10.1016/j.yexcr.2016.09.012

24. Mahmood Saba Choudhery, Michael Badowski, et al. Comparison of human mesenchymal stem cells derived from adipose and cord tissue, Cytotherapy, Volume 15, Issue 3, 2013, Pages 330-343, ISSN 1465-3249, https://doi.org/10.1016/j.jcyt.2012.11.010. DOI: https://doi.org/10.1016/j.jcyt.2012.11.010

25. Rezania, A., J.E. Bruin, M.J. Riedel, et al. 2012. Maturation of Human Embryonic Stem Cell-Derived Pancreatic Progenitors Into Functional Islets Capable of Treating Pre-existing Diabetes in Mice. Diabetes. 61:2016-2029. doi: 10.2337/db11-1711. DOI: https://doi.org/10.2337/db11-1711

26. Southard, S.M., R.P. Kotipatruni, and W.L. Rust. 2018. Generation and selection of pluripotent stem cells for robust differentiation to insulin-secreting cells capable of reversing diabetes in rodents. PLoS ONE. 13:e0203126. doi: 10.1371/journal.pone.0203126. DOI: https://doi.org/10.1371/journal.pone.0203126

27. Mannering, S.I., and T.C. Brodnicki. 2007. Recent insights into CD4+ T-cell specificity and function in type 1 diabetes. Expert Rev Clin Immunol. 3:557-564. doi: 10.1586/1744666X.3.4.557. DOI: https://doi.org/10.1586/1744666X.3.4.557

28. Bassi, ÊJ., P.M.M. Moraes-Vieira, C.S.R. Moreira-Sá, et al. 2012. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes. 61:2534-2545. doi: 10.2337/db11-0844. DOI: https://doi.org/10.2337/db11-0844

29. Soeldner, J.S., M. Tuttleman, S. Srikanta, O.P. Ganda, and G.S. Eisenbarth. 1985. Insulin-dependent diabetes mellitus and autoimmunity: islet-cell autoantibodies, insulin autoantibodies, and beta-cell failure. N. Engl. J. Med. 313:893-894. doi: 10.1056/NEJM198510033131417. DOI: https://doi.org/10.1056/NEJM198510033131417

30. Erlich, H., A.M. Valdes, J. Noble, J.A. Carlson, M. Varney, P. Concannon, J.C. Mychaleckyj, J.A. Todd, P. Bonella, A.L. Fear, E. Lavant, A. Louey, and P. Moonsamy. 2008. HLA DR-DQ Haplotypes and Genotypes and Type 1 Diabetes Risk. Diabetes. 57:1084-1092. doi: 10.2337/db07-1331. DOI: https://doi.org/10.2337/db07-1331

31. Sutherland, D.E., F.C. Goetz, and R.K. Sibley. 1989. Recurrence of disease in pancreas transplants. Diabetes. 38 Suppl 1:85-87. doi: 10.2337/diab.38.1.s85. DOI: https://doi.org/10.2337/diab.38.1.S85

32. Young, H.Y., P. Zucker, R.A. Flavell, A.M. Jevnikar, and B. Singh. 2004. Characterization of the role of major histocompatibility complex in type 1 diabetes recurrence after islet transplantation. Transplantation. 78:509-515. doi: 10.1097/01.tp.0000128907.83111.c6. DOI: https://doi.org/10.1097/01.TP.0000128907.83111.C6

33. Gu, W., J. Hu, W. Wang, et al. 2012. Diabetic Ketoacidosis at Diagnosis Influences Complete Remission After Treatment With Hematopoietic Stem Cell Transplantation in Adolescents With Type 1 Diabetes. Diabetes Care. 35:1413-1419. doi: 10.2337/dc11-2161. DOI: https://doi.org/10.2337/dc11-2161

34. Kupfer, T.M., M.L. Crawford, K. Pham, and R.G. Gill. 2005. MHC-mismatched islet allografts are vulnerable to autoimmune recognition in vivo. J. Immunol. 175:2309-2316. doi: 10.4049/jimmunol.175.4.2309. DOI: https://doi.org/10.4049/jimmunol.175.4.2309

35. Cooper, L.J.N., B. Jena, and C.M. Bollard. 2012. Good T cells for bad B cells. Blood. 119:2700-2702. doi: 10.1182/blood-2011-12-398719. DOI: https://doi.org/10.1182/blood-2011-12-398719

36. van der Torren, Cornelis R., A. Zaldumbide, G. Duinkerken, et al. 2017. Immunogenicity of human embryonic stem cell-derived beta cells. Diabetologia. 60:126-133. doi: 10.1007/s00125-016-4125-y. DOI: https://doi.org/10.1007/s00125-016-4125-y

37. Xu, H., B. Wang, M. Ono, et al. 2019. Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune Compatibility. Cell Stem Cell. 24:566-578.e7. doi: 10.1016/j.stem.2019.02.005. DOI: https://doi.org/10.1016/j.stem.2019.02.005

38. Deuse, T., X. Hu, A. Gravina, et al. 2019. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol. 37:252-258. doi: 10.1038/s41587-019-0016-3. DOI: https://doi.org/10.1038/s41587-019-0016-3

39. Korsgren, O. 2017. Islet Encapsulation: Physiological Possibilities and Limitations. Diabetes. 66:1748-1754. doi: 10.2337/db17-0065. DOI: https://doi.org/10.2337/db17-0065

40. Han, X., M. Wang, S. Duan, et al. 2019. Generation of hypoimmunogenic human pluripotent stem cells. Proc Natl Acad Sci U S A. 116:10441-10446. doi: 10.1073/pnas.1902566116. DOI: https://doi.org/10.1073/pnas.1902566116

41. Giménez, C.A., M. Ielpi, A. Mutto, L. Grosembacher, P. Argibay, and F. Pereyra-Bonnet. 2016. CRISPR-on system for the activation of the endogenous human INS gene. Gene Ther. 23:543-547. doi: 10.1038/gt.2016.28. DOI: https://doi.org/10.1038/gt.2016.28

42. Zhu, Y., Liu, Q., Zhou, Z., & Ikeda, Y. (2017). PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration. Stem cell research & therapy, 8(1), 240. https://doi.org/10.1186/s13287-017-0694-z DOI: https://doi.org/10.1186/s13287-017-0694-z

43. Cai, E.P., Ishikawa, Y., Zhang, W. et al. Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes. Nat Metab 2, 934–945 (2020). https://doi.org/10.1038/s42255-020-0254-1 DOI: https://doi.org/10.1038/s42255-020-0254-1

Downloads

Published

2025-08-29

How to Cite

The Role of Stem Cell Therapy in Treating Type 1 Diabetes and Scientific Advances in Evading an Immune Response. (2025). Harvard Medical Student Review, 10(1), 62-71. https://doi.org/10.65539/xdtar040